
Container4NFV
Release Latest

May 09, 2019

Contents

1 Container4NFV Gap Analysis 1

2 Container4NFV Release Notes 5

3 Container4NFV User Guide 7

i

ii

CHAPTER 1

Container4NFV Gap Analysis

Project Container4NFV, https://wiki.opnfv.org/display/OpenRetriever/Container4NFV

Editors Xuan Jia (China Mobile), Gergely Csatari (Nokia)

Authors Container4NFV team

Abstract This document provides the users with top-down gap analysis regarding OpenRetriever feature
requirements with OPNFV Installer, OpenStack Official Release and Kubernetes Official Release.

1.1 Container4NFV architecture options

Analyzis of the architecture options were moved to the Container4NFV wiki.

1.2 Container4NFV Gap Analysis with OPNFV Installer

This section provides users with Container4NFV gap analysis regarding feature requirement with OPNFV Installer
in Danube Official Release. The following table lists the use cases / feature requirements of container integrated
functionality, and its gap analysis with OPNFV Installer in Danube Official Release. OPNFV installer should support
them.

Use Case / Requirement Supported in Danube Notes
Use Openstack Magnum to install container environment No Magnum is supported in Openstack Official Release, but it’s not supported in OPNFV Installer. Magnum is the place where container can be installed in OPNFV.
Use Openstack Ironic to supervise bare metal machine No Container could be installed in bare metal machine. Ironic provides bare metal machine, work with Magnum together to setup a container environment, be installed in OPNFV.
Use Openstack Kuryr to provide network for container No Container has its own network solution. Container needs to connect with virtual machines, and Kuryr which use Neutron provides network service is the best choice now.

1

https://wiki.opnfv.org/display/OpenRetriever/Container4NFV
https://wiki.opnfv.org/display/OpenRetriever/Analyzis+of+architecture+options

Container4NFV, Release Latest

1.3 Container4NFV Gap Analysis with OpenStack

This section provides a gap analyzis between the targets of Container4NFV for release Euphrates (E) or later and the
features provided by OpenStack in release Ocata. As the OPNFV and OpenStack releases tend to change over time
this analyzis is planned to be countinously updated. During the analyzis all OpenStack projects considered.

(Editors note: Maybe we should define a scope of OpenStack projects which is considered. All OpenStack projects
can mean anything.)

The following table lists the use cases / feature requirements of container integrated functionality, and its gap analysis
with OpenStack.

Use Case / Requirement Related OpenStack project Notes Status
Manage container and virtual machine lifecycle with the same NB API Zun or nova-docker driver Magnum can deploy a Container Orchestration Engine (COE), but does not provide any lifecycle management operations to the containers deployed in the COE. Zun provides lifecycle management support for the containers deployed in the COE via Nova API, but not all COE API operations are supported. nova-docker driver provided support for container lifecycle management without a COE (and Magnum), but it was deprecated due to lack of community support. A fork of the original nova-docker driver is maintained by the Zun team to provide support for the sandbox containers. Note: Support for this is not targeted in OPNFV release E. Open
Container private registry to store container images Swift, Cinder, Glance, Glare Container images need a storage backed from where the COE can serve the registry. This backend should be accessible and should be supported by the COE. As a workaround it is possible to install a registry backend to a VM , but it is more optimal to use the possible backends already available in OpenStack, like Swift, Cinder, Glance or Glare. Open
Kuryr needs to support MACVLAN and IPVLAN Kuryr Using MACVLAN or IPVLAN could provide better network performance. It is planned for Ocata. Open
Kuryr Kubernetes integration is needed Kuryr It is done in the frame of Container4NFV. Targeted to OPNFV release E /OpenStack Ocata
HA support for Kuryr Kuryr Targeted to OPNFV release E /OpenStack Ocata
HA support for Zun Zun Open

1.4 Container4NFV Gap Analysis with Kubernetes v1.5

This section provides users with Container4NFV gap analysis regarding feature requirement with Kubernetes Official
Release. The following table lists the use cases / feature requirements of container integrated functionality, and its gap
analysis with Kubernetes Official Release.

Use Case / Requirement Supported in v1.5 Notes
Manage conainter and virtual ma-
chine in the same platform.

No There are some ways how Kuber-
netes could manage VM-s:

1. Kubevirt
2. Kubernetes can start rkt and

with rkt it is possible to start
VM-s

3. Virtlet
4. Hypercontainer

Kubernetes support multiple net-
works.

No As VNF needs at least three inter-
faces. Management,control plane,
data plane. CNI already supports
multiple interfaces in the API defi-
nition.

1. Multus
2. CNI-Genie
3. A solution built into Kuber-

netes

Kubernetes support NAT-less con-
nections to a container

No SIP/SDP and SCTP are not working
with NAT-ed networks

Kubernetes scheduling support CPU
bindingNUMA features

No The kubernetes schedular don’t sup-
port these features

Continued on next page

2 Chapter 1. Container4NFV Gap Analysis

https://wiki.openstack.org/wiki/Zun
https://wiki.openstack.org/wiki/Magnum
https://wiki.openstack.org/wiki/Zun
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Cinder
https://wiki.openstack.org/wiki/Glance
https://github.com/openstack/glare
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Cinder
https://wiki.openstack.org/wiki/Glance
https://github.com/openstack/glare
https://wiki.openstack.org/wiki/Kuryr
https://wiki.openstack.org/wiki/Kuryr
https://wiki.openstack.org/wiki/Kuryr
https://kubernetes.io/
https://wiki.openstack.org/wiki/Kuryr
https://wiki.openstack.org/wiki/Kuryr
https://wiki.openstack.org/wiki/Kuryr
https://wiki.openstack.org/wiki/Zun
https://wiki.openstack.org/wiki/Zun
https://github.com/kubevirt/kubevirt
https://coreos.com/rkt/docs/latest/running-kvm-stage1.html
https://coreos.com/rkt/docs/latest/running-kvm-stage1.html
https://github.com/Mirantis/virtlet
https://github.com/kubernetes/frakti
https://github.com/containernetworking/cni/blob/master/SPEC.md
https://github.com/Intel-Corp/multus-cni
https://github.com/Huawei-PaaS/CNI-Genie
https://docs.google.com/document/d/1TW3P4c8auWwYy-w_5afIPDcGNLK3LZf0m14943eVfVg/
https://docs.google.com/document/d/1TW3P4c8auWwYy-w_5afIPDcGNLK3LZf0m14943eVfVg/

Container4NFV, Release Latest

Table 3 – continued from previous page
Use Case / Requirement Supported in v1.5 Notes
DPDK need to support CNI No DPDK is the technology to acceler-

ate the data plane. Container need
support it, the same with virtual ma-
chine.

SR-IOV can support CNI (Optional) No SR-IOV could let container get high
performance

1.4. Container4NFV Gap Analysis with Kubernetes v1.5 3

Container4NFV, Release Latest

4 Chapter 1. Container4NFV Gap Analysis

CHAPTER 2

Container4NFV Release Notes

2.1 Container4NFV E release Notes

1. Gap analysis for openstack,kubernetes,opnfv installer

2. Container architecture options

3. Joid could support Kubernetes

4. Using vagrant tool to setup an env with DPDK enabled.

2.2 Container4NFV F release Notes

1. Enable Multus in Kubernetes

2. Enable SR-IOV in Kubernetes

3. Support ARM platform

2.3 Container4NFV G release Notes

1. Enable Virtlet in Kubernetes

2. Enable Kata in Kubernetes

3. Enable VPP in Kubernetes

4. Enable Vagrant tools.

5

Container4NFV, Release Latest

6 Chapter 2. Container4NFV Release Notes

CHAPTER 3

Container4NFV User Guide

3.1 Installation

This quickstart shows you how to easily install a Kubernetes cluster on VMs running with Vagrant. You can
find the four projects inside container4nfv/src/vagrant and their documentation: - kubeadm_basic: weave.rst -
kubeadm_multus: multus.rst - kubeadm_ovsdpdk: ovs-dpdk.rst - kubeadm_virtlet: virtlet.rst

Vagrant is installed in Ubuntu 16.04 64bit. vagrant is to create kubernetes cluster using kubeadm. kubernetes installa-
tion by kubeadm can be refered to https://kubernetes.io/docs/getting-started-guides/kubeadm.

3.2 e release

3.2.1 Vagrant Setup

sudo apt-get install -y virtualbox wget –no-check-certificate https://releases.hashicorp.com/vagrant/1.8.7/vagrant_1.8.
7_x86_64.deb sudo dpkg -i vagrant_1.8.7_x86_64.deb

3.2.2 K8s Setup

git clone http://gerrit.opnfv.org/gerrit/container4nfv -b stable/euphrates cd container4nfv/src/vagrant/k8s_kubeadm/
vagrant up

3.2.3 Run K8s Example

vagrant ssh master -c “kubectl apply -f /vagrant/examples/virtio-user.yaml”

7

https://kubernetes.io/docs/getting-started-guides/kubeadm
https://releases.hashicorp.com/vagrant/1.8.7/vagrant_1.8.7_x86_64.deb
https://releases.hashicorp.com/vagrant/1.8.7/vagrant_1.8.7_x86_64.deb
http://gerrit.opnfv.org/gerrit/container4nfv

Container4NFV, Release Latest

3.2.4 K8s Cleanup

vagrant destroy -f

3.3 f release

3.3.1 Vagrant Setup

1. setup_vagrant.sh may install all for you. The project uses vagrant with libvirt as default because of performance.

` container4nfv/src/vagrant# ./setup_vagrant.sh `

Consequently, we need to reboot to make libvirtd group effective.

2. Deploy:

To test all the projects inside vagrant/ just run the next script:

` container4nfv/ci# ./deploy.sh `

3.4 Senario:

3.4.1 k8-nosdn-nofeature-noha

Using Joid to deploy Kubernetes in bare metal machine https://build.opnfv.org/ci/job/
joid-k8-nosdn-nofeature-noha-baremetal-daily-euphrates/lastBuild/

3.4.2 k8-nosdn-lb-noha

Using Joid to deploy Kubernetes in bare metal machine with load balance enabled https://build.opnfv.org/ci/job/
joid-k8-nosdn-lb-noha-baremetal-daily-euphrates/

3.5 YardStick test Cases

3.5.1 opnfv_yardstick_tc080

measure network latency between containers in k8s using ping https://git.opnfv.org/yardstick/tree/tests/opnfv/test_
cases/opnfv_yardstick_tc080.yaml

3.5.2 opnfv_yardstick_tc081

measure network latency between container and VM using ping https://git.opnfv.org/yardstick/tree/tests/opnfv/test_
cases/opnfv_yardstick_tc081.yaml

8 Chapter 3. Container4NFV User Guide

https://build.opnfv.org/ci/job/joid-k8-nosdn-nofeature-noha-baremetal-daily-euphrates/lastBuild/
https://build.opnfv.org/ci/job/joid-k8-nosdn-nofeature-noha-baremetal-daily-euphrates/lastBuild/
https://build.opnfv.org/ci/job/joid-k8-nosdn-lb-noha-baremetal-daily-euphrates/
https://build.opnfv.org/ci/job/joid-k8-nosdn-lb-noha-baremetal-daily-euphrates/
https://git.opnfv.org/yardstick/tree/tests/opnfv/test_cases/opnfv_yardstick_tc080.yaml
https://git.opnfv.org/yardstick/tree/tests/opnfv/test_cases/opnfv_yardstick_tc080.yaml
https://git.opnfv.org/yardstick/tree/tests/opnfv/test_cases/opnfv_yardstick_tc081.yaml
https://git.opnfv.org/yardstick/tree/tests/opnfv/test_cases/opnfv_yardstick_tc081.yaml

Container4NFV, Release Latest

3.6 Multus implementation for OPNFV

This quickstart shows you how to easily install a Kubernetes cluster on VMs running with Vagrant. The installation
uses a tool called kubeadm which is part of Kubernetes.

kubeadm assumes you have a set of machines (virtual or bare metal) that are up and running. In this way we can get
a cluster with one master node and 2 workers (default). If you want to increase the number of workers nodes, please
check the Vagrantfile inside the project.

3.6.1 About Multus

[Multus](https://github.com/Intel-Corp/multus-cni) is a CNI proxy and arbiter of other CNI plugins.

With the help of Multus CNI plugin, multiple interfaces can be added at the same time when deploying a pod. Notably,
Virtual Network Functions (VNFs) are typically requiring connectivity to multiple network interfaces.

The Multus CNI has the following features: - It is a contact between the container runtime and other plugins, and it
doesn’t have any of its own net configuration, it calls other plugins like flannel/calico to do the real net conf. job. -
Multus reuses the concept of invoking the delegates in flannel, it groups the multi plugins into delegates and invoke
each other in sequential order, according to the JSON scheme in the cni configuration. - No. of plugins supported is
dependent upon the number of delegates in the conf file. - Master plugin invokes “eth0” interface in the pod, rest of
plugins(Mininon plugins eg: sriov,ipam) invoke interfaces as “net0”, “net1”.. “netn”. - The “masterplugin” is the only
net conf option of Multus cni, it identifies the primary network. The default route will point to the primary network.

3.6. Multus implementation for OPNFV 9

https://github.com/Intel-Corp/multus-cni

Container4NFV, Release Latest

3.6.2 Multus example

3.7 Nginx implementation for OPNFV

This quickstart shows you how to easily install a Kubernetes cluster on VMs running with Vagrant. The installation
uses a tool called kubeadm which is part of Kubernetes.

kubeadm assumes you have a set of machines (virtual or bare metal) that are up and running. In this way we can get
a cluster with one master node and 2 workers (default). If you want to increase the number of workers nodes, please
check the Vagrantfile inside the kubeadm_basic/.

10 Chapter 3. Container4NFV User Guide

Container4NFV, Release Latest

3.7.1 About Nginx

Nginx is a web server which can also be used as a reverse proxy, load balancer and HTTP cache.

3.8 Ovsdpdk implementation for OPNFV

This quickstart shows you how to easily install a Kubernetes cluster on VMs running with Vagrant. The installation
uses a tool called kubeadm which is part of Kubernetes.

kubeadm assumes you have a set of machines (virtual or bare metal) that are up and running. In this way we can get
a cluster with one master node and 2 workers (default). If you want to increase the number of workers nodes, please
check the Vagrantfile inside the project.

3.8.1 About OvS-dpdk

Open vSwitch* with the Data Plane Development Kit [OvS-DPDK](http://openvswitch.org/) is a high performance,
open source virtual switch.

Using DPDK with OVS gives us tremendous performance benefits. Similar to other DPDK-based applications, we see
a huge increase in network packet throughput and much lower latencies.

3.9 Clearwater implementation for OPNFV

CONTAINER4NFV setup a Kubernetes cluster on VMs running with Vagrant and kubeadm.

kubeadm assumes you have a set of machines (virtual or bare metal) that are up and running. In this way we can get
a cluster with one master node and 2 workers (default). If you want to increase the number of workers nodes, please
check the Vagrantfile inside the project.

Is Clearwater suitable for Network Functions Virtualization?

Network Functions Virtualization or NFV is, without any doubt, the hottest topic in the telco network space right now.
It’s an approach to building telco networks that moves away from proprietary boxes wherever possible to use software
components running on industry-standard virtualized IT infrastructures. Over time, many telcos expect to run all their
network functions operating at Layer 2 and above in an NFV environment, including IMS. Since Clearwater was
designed from the ground up to run in virtualized environments and take full advantage of the flexibility of the Cloud,
it is extremely well suited for NFV. Almost all of the ongoing trials of Clearwater with major network operators are
closely associated with NFV-related initiatives.

3.9.1 About Clearwater

Clearwater follows IMS architectural principles and supports all of the key standardized interfaces expected of an
IMS core network. But unlike traditional implementations of IMS, Clearwater was designed from the ground up for
the Cloud. By incorporating design patterns and open source software components that have been proven in many
global Web applications, Clearwater achieves an unprecedented combination of massive scalability and exceptional
cost-effectiveness.

Clearwater provides SIP-based call control for voice and video communications and for SIP-based messaging appli-
cations. You can use Clearwater as a standalone solution for mass-market VoIP services, relying on its built-in set of
basic calling features and standalone susbscriber database, or you can deploy Clearwater as an IMS core in conjunction
with other elements such as Telephony Application Servers and a Home Subscriber Server.

3.8. Ovsdpdk implementation for OPNFV 11

http://openvswitch.org/
http://www.projectclearwater.org/about-clearwater/
https://en.wikipedia.org/wiki/IP_Multimedia_Subsystem

Container4NFV, Release Latest

Clearwater was designed from the ground up to be optimized for deployment in virtualized and cloud environments. It
leans heavily on established design patterns for building and deploying massively scalable web applications, adapting
these design patterns to fit the constraints of SIP and IMS. The Clearwater architecture therefore has some similarities
to the traditional IMS architecture but is not identical.

• All components are horizontally scalable using simple, stateless load-balancing.

• All long lived state is stored on dedicated “Vellum” nodes which make use of cloud-optimized storage technolo-
gies such as Cassandra. No long lived state is stored on other production nodes, making it quick and easy to
dynamically scale the clusters and minimizing the impact if a node is lost.

• Interfaces between the front-end SIP components and the back-end services use RESTful web services inter-
faces.

• Interfaces between the various components use connection pooling with statistical recycling of connections to
ensure load is spread evenly as nodes are added and removed from each layer.

3.9.2 Clearwater Architecture

12 Chapter 3. Container4NFV User Guide

http://www.projectclearwater.org/technical/clearwater-architecture/

Container4NFV, Release Latest

3.10 Quickstart

This repository contains instructions and resources for deploying Metaswitch’s Clearwater project with Kubernetes.

If you need more information about Clearwater project please checkout our [documentation](https://github.com/opnfv/
container4nfv/blob/master/docs/release/userguide/clearwater-project.rst) or the official repository.

3.10.1 Exposed Services

The deployment exposes:

• the Ellis web UI on port 30080 for self-provisioning.

• STUN/TURN on port 3478 for media relay.

• SIP on port 5060 for service.

• SIP/WebSocket on port 5062 for service.

SIP devices can register with bono.:5060 and the Ellis provisioning interface can be accessed at port 30080.

3.10.2 Prerequirement

Install Docker and Vagrant

CONTAINER4NFV uses setup_vagrant.sh to install all resource used by this repository.

container4nfv/src/vagrant# ./setup_vagrant.sh -b libvirt

3.10.3 Instalation

Deploy Clearwater with kubeadm

Check clearwater/clearwater_setup.sh for details about k8s deployment.

container4nfv/src/vagrant/kubeadm_clearwater# ./deploy.sh

3.10.4 Destroy

container4nfv/src/vagrant# ./cleanup.sh

3.10.5 Making calls through Clearwater

Connect to Ellis service

It’s important to connect to Ellis to generate the SIP username, password and domain we will use with the SIP client.
Use your <master ip addres> + port 30080 (k8s default port). If you are not which Ellis’s url is, please check inside
your master node.

3.10. Quickstart 13

https://github.com/opnfv/container4nfv/blob/master/docs/release/userguide/clearwater-project.rst
https://github.com/opnfv/container4nfv/blob/master/docs/release/userguide/clearwater-project.rst
https://github.com/Metaswitch/clearwater-docker

Container4NFV, Release Latest

kubeadm_clearwater# vagrant ssh master
master@vagrant# ifconfig eth0 | grep "inet addr" | cut -d ':' -f 2 | cut -d ' ' -f 1
192.168.121.3

In your browser connect to <master_ip>:30080 (ex. 192.168.121.3:30080).

After that, signup and generate two users. The signup key is secret. Ellis will automatically allocate you a new number
and display its password to you. Remember this password as it will only be displayed once. From now on, we will use
<username> to refer to the SIP username (e.g. 6505551234) and <password> to refer to the password.

Config and install two SIP clients

We’ll use both Twinkle and Blink SIP client. , since we are going to try this out inside a LAN network. This is,
of course, only a local test inside a LAN network. Configure the clients may be a little bit trickie, so we add some
screenshots:

Blink setup

1. Add <username> and <password>.

14 Chapter 3. Container4NFV User Guide

Container4NFV, Release Latest

2. Configure a proxy to k8s.

3.10. Quickstart 15

Container4NFV, Release Latest

3. Configure the network to use TCP only.

16 Chapter 3. Container4NFV User Guide

Container4NFV, Release Latest

3.10. Quickstart 17

Container4NFV, Release Latest

Twinkle setup

1. Configure a proxy to k8s.

18 Chapter 3. Container4NFV User Guide

Container4NFV, Release Latest

2. Add <username> and <password>.

3.10. Quickstart 19

Container4NFV, Release Latest

3. Configure the network to use TCP only.

20 Chapter 3. Container4NFV User Guide

Container4NFV, Release Latest

3.10. Quickstart 21

Container4NFV, Release Latest

Make the call

22 Chapter 3. Container4NFV User Guide

	Container4NFV Gap Analysis
	Container4NFV Release Notes
	Container4NFV User Guide

