

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

1. Container4NFV on Arm

1.1. Abstract

This document gives a brief introduction on Arm’s work status, strategy and possible roadmap for Container4NFV
on arm64 server platform.
The target of the description is to let you get to know what are Arm’s current capability and future
direction for Container4NFV project.

1.2. Introduction

As you know, Arm is a silver member of OPNFV. Arm actively takes part in the work
of Container4NFV project which aims to enable building a container-based NFV
infrastructure in edge node or core-network on Arm server platform.
We would introduce the work of Arm containerized NFV-I from the following points:
1. Architecture
2. Container Networking
3. Related Projects
4. Current Status and Future Plan
5. Contacts

1.3. Architecture

Basically, Arm’s containerized NFV infrastructure aligns with the architecture [https://wiki.opnfv.org/pages/viewpage.action?spaceKey=OpenRetriever&title=Container%27s+Architecture+for+Cloud+Native+NFV] of Container4NFV which now usually uses
the Kubernetes as the Container Orchestration Engine(COE), and the CNI as the network framework.
Currently a typical architecture of containerized NFV-I on Arm is composed of installer, Kubernetes, related OPNFV projects, such as
Functest, Yardstick, and possible Arm Node Feature Discovery(A-NFD) which would enable finding certain resources and their usage status
of Arm servers and is still to be developed. In the future, other high-level VNF orchestration engines, such as Tacker or ONAP would also
be brought in to facilitate the deployment of actual VNFs.

[image: Containerized NFV Infrastruture on Arm]
A typical VNF networking service deployment is given as the following graph:

[image: Networking Service Deployment on Arm Server]

1.4. Container Networking

1.4.1. Basic Networking Model

Since Arm’s containerized NFV infrastructure uses Kubernetes as the COE, so the CNI plug-ins are used to orchestrate networking.
Every time a POD is initialized or removed, the default CNI plug-in is called with the default configuration. This CNI plug-in
creates a pseudo interface, attaches it to the relevant underlay network, sets the IP and routes and maps it to the POD namespace.

The Kubernetes networking model [https://kubernetes.io/docs/concepts/cluster-administration/networking/] satisfies the following fundamental requirements:
* 1 all containers can communicate with all other containers without NAT
* 2 all nodes can communicate with all containers (and vice-versa) without NAT
* 3 the IP that a container sees itself as is the same IP that others see it as

On the Arm platform, the most common Kubernetes networking solution is Flannel [https://github.com/coreos/flannel] which uses overlay technique to resolve the pod
communication across hosts. The arm64 version of Flannel release can be found here [https://github.com/coreos/flannel/releases]. Project Calico [http://docs.projectcalico.org/] is also a high performance,
highly scalable networking solution which provides network policy for connecting Kubernetes pods based on the same IP networking
principles as the internet. But Calico for Arm is still under development and it’s one of our task to enable it for container
networking on Arm Container4NFV.

Refer to guide [https://thenewstack.io/hackers-guide-kubernetes-networking/], Kubernetes uses CNI plug-ins to orchestrate networking. Every time a POD is initialized or removed, the default
CNI plug-in is called with the default configuration. This CNI plug-in creates a pseudo interface, attaches it to the relevant
underlay network, sets the IP and routes and maps it to the POD namespace.

Most of the ordinary Kubernetes CNI [https://github.com/containernetworking/cni] plugins for arm64, including bridge, flannel, loopback, host-local, portmap, macvlan, ipvlan, ptp,
noop could be found in the release [https://github.com/containernetworking/cni/releases] of containernetworking CNI. Current CNI plugins stable version for arm64 is v0.6.0.

1.4.2. Multiple Interfaces Support in a Pod

Kubernetes initially supports only one CNI interface per POD with one cluster-wide configuration. But some VNFs with data plane
acceleration, there would be one or two interfaces used for high performance data access besides the normal interfaces, such as
Flannel, Calico, Weave, PTP, which are still kept for control or configuration purpose.

The SR-IOV [https://github.com/hustcat/sriov-cni] CNI or DPDK [https://github.com/Intel-Corp/sriov-cni] CNI could be chosen to add data plane acceleration interfaces for Kubernetes Pods. Arm is doing some
improvement on SR-IOV [https://github.com/hustcat/sriov-cni] CNI to assign PF [https://github.com/hustcat/sriov-cni/issues/14] directly if VF is not needed or available.

With the help of Multus [https://github.com/Intel-Corp/multus-cni] CNI plugin, multiple interfaces can be added at the same time when deploying a pod. The Multus CNI has
the following features:

	It is a contact between the container runtime and other plugins, and it doesn’t have any of its own net configuration, it calls
other plugins like flannel/calico to do the real net conf job.

	Multus reuses the concept of invoking the delegates in flannel, it groups the multi plugins into delegates and invoke each
other in sequential order, according to the JSON scheme in the cni configuration.

	No. of plugins supported is dependent upon the number of delegates in the conf file.

	Master plugin invokes “eth0” interface in the pod, rest of plugins(Mininon plugins eg: sriov,ipam) invoke interfaces as “net0”,
“net1”.. “netn”

	The “masterplugin” is the only net conf option of Multus cni, it identifies the primary network. The default route will point
to the primary network.

A typical Multus CNI configuration with DPDK passthrough(SR-IOV PF) enabled is given below:

{
 "name": "multus-k8s-network",
 "type": "multus",
 "delegates": [
 {
 "type": "flannel",
 "masterplugin": true,
 "delegate": {
 "isDefaultGateway": true
 }
 },
 {
 "type": "sriov",
 "master": "eth1",
 "dpdk": {
 "ethernet_driver": "ixgbe",
 "io_driver": "vfio-pci",
 "dpdk_devbind": "/root/dpdk/usertools/dpdk-devbind.py"
 }
 },
 {
 "type": "sriov",
 "master": "eth2",
 "dpdk": {
 "ethernet_driver": "ixgbe",
 "io_driver": "vfio-pci",
 "dpdk_devbind": "/root/dpdk/usertools/dpdk-devbind.py"
 }
 }
]
}

1.5. Related Projects

For aligning with Container4NFV ‘E’ release requirement, there are 3 related projects on Arm Container4NFV platform, which are
Installer(Joid or others), Yardstick for performance evaluation and Functest for basic function verification.

1.5.1. Installer

Installer is responsible for the deployment of a typical Container4NFV environment, and for ‘E’ release, it is considered to have
a Kubernetes cluster, a simple networking solution(Flannel), Yardstick, and some VNFs. The possible installer for arm64 platform
would be based on one of Compass, Joid and Apex.

1.5.2. Yardstick

Yardstick [https://wiki.opnfv.org/yardstick] is an OPNFV Project. The project’s goal is to verify infrastructure compliance, from the perspective
of a Virtual Network Function(VNF). The latest Yardstick implementation had been enhanced to support Kubernetes context and we have
enabled it on arm64 platform.

A typical sample arm64 config file corresponding to yardstick/tests/opnfv/test_cases/opnfv_yardstick_tc080.yaml which is for x86 is
given below:

schema: "yardstick:task:0.1"

scenarios:
-
 type: Ping
 options:
 packetsize: 200

 host: host-k8s
 target: target-k8s

 runner:
 type: Duration
 duration: 60
 interval: 1

 sla:
 max_rtt: 10
 action: monitor

 context:
 type: Kubernetes
 name: k8s

 servers:
 host:
 image: openretriever/yardstick_aarch64
 command: /bin/bash
 args: ['-c', 'chmod 700 ~/.ssh; chmod 600 ~/.ssh/*; service ssh restart;while true ; do sleep 10000; done']
 target:
 image: openretriever/yardstick_aarch64
 command: /bin/bash
 args: ['-c', 'chmod 700 ~/.ssh; chmod 600 ~/.ssh/*; service ssh restart;while true ; do sleep 10000; done']

Some other useful testing images for arm64, such as images for iperf3, netperf could also be found in the docker hub under openretriever [https://hub.docker.com/u/openretriever/],
which would be changed to container4nfv [https://hub.docker.com/u/container4nfv/] in the future because of the project renaming.

Besides enabling [https://gerrit.opnfv.org/gerrit/#/c/43723/] some tests on Arm platform, Arm has made contributions to add more support for Kubernetes context
and enable a special feature [https://gerrit.opnfv.org/gerrit/#/c/43719/] for the netperf test scenario.

1.5.3. Functest

The Functest project provides comprehensive testing methodology, test suites and test cases to test and verify OPNFV Platform functionality
that covers the VIM and NFVI components.

Functest for Container4NFV could used to verify the basic VIM functionality to support VNF operations(create, modify, shrink, destroy). For
the Danube [http://docs.opnfv.org/en/stable-danube/submodules/functest/docs/testing/user/userguide/index.html] release, there are 4 domains(VIM, Controllers, Features, VNF) and 5 tiers(healthcheck, smoke, features, components, vnf) and more
than 20 test cases.

But now the Functest has not been extended to support Kubernetes, which is still under developing.

1.6. Current Status and Future Plan

Now for Arm containerized NFV-I, we have enabled Multus CNI with Flannel CNI, SR-IOV/DPDK CNI. Data plane acceleration with DPDK on SR-IOV or NIC
passthrough in containers has also been enabled and tested.

[image: Container Networking Acceleration with DPDK]
We have also enabled Yardstick to verify the compliance of the Pod communication in the Kubernetes context.

[image: Yardstick Container Test Environment on Arm NFV-I]

	For the future plan, we would continue to align with the development roadmap of Container4NFV. And the following work would be also be preferred

	for Arm Contaier4NFV of the next ‘F’ release:

	1 Project Calico enablement for arm64

	2 VPP DPDK/ODP for container networking

	3 OPNFV installer enablement on Arm for Container4NFV

	4 Possible enhancement to Yardstick, Functest

	5 Typical VNFs w/o data plane accelerations

	6 CI work with Yardstick, Functest

1.7. Contacts

Trevor Tao(Zijin Tao), Bin Lu, Song Zhu, Kaly Xin and Yibo Cai from Arm have made contributions to this document.

Trevor Tao: trevor.tao@arm.com
Bin Lu: bin.lu@arm.com
Song Zhu: song.zhu@arm.com
Kaly xin: kaly.xin@arm.com
Yibo Cai: yibo.cai@arm.com

Kubernetes Pods with DPDK Acceration Deployment on Arm Server

Abstract

This document gives a brief introduction on how to deploy Pods with DPDK acceration for data plane.

Introduction

As we know, in some cases we need to deploy Pods with data-plane acceration.
Typically, in production area(5G, Edge computing),
one interface we used for control plane, it usually will be flannel.
For data plane, sriov cni + DPDK has the best throughput and the lowest lantency.
In this case, I will introduce Pod with DPDK acceration firstly.

NIC with SR-IOV capabilities works by introducing the idea of physical functions (PFs)
and virtual functions (VFs).
In general, PF is used by host.
Each VFs can be treated as a separate physical NIC and assigned to one container,
and configured with separate MAC, VLAN and IP, etc.
If we want the best networking performance for Pods, this should be the best solution.

DPDK is a set of libraries and drivers for fast packet processing.
It is designed to run on any processors.
DPDK can greatly boosts packet processing performance and throughput,
allowing more time for data plane applications.
Also it can improve packet processing performance by up to ten times.

For demo purpose, I suggest that we use Kubeadm to deploy a Kubernetes cluster firstly.
Then I will give out a typical deployment scenario.

Basic Information about Environment

Cluster Info

In this case, we deploy master and slave as one node.
Suppose it to be: 192.168.1.2

In 192.168.1.2, 2 NIC as required.
Suppose it to be: eth0, eth1, eth0 is used to be controle plane, and eth1 is used to be data plane.
Also eth1 should support SRIOV.

Deploy Kubernetes

Please see link(https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/) as reference.

SRIOV Configuration

Please make sure SRIOV VF mode was enabled in your host.

	::

	
	For example

	rmmod ixgb
modprobe ixgbe max_vfs=8

VFIO and IOMMU Configuration

Please make sure the required pcie devices were binded into vfio-pci.
And IOMMU was optional on Arm64 platform

	::

	With driverctl:

driverctl -v list-devices | grep -i net
driverctl set-override <pci-slot> vfio-pci

With dpdk_nic_bind (DPDK <= 16.04):

modprobe vfio-pci
dpdk_nic_bind –status
dpdk_nic_bind –bind=vfio-pci <pci-slot>

With dpdk-devbind (DPDK >= 16.07:

modprobe vfio-pci
dpdk-devbind –status
dpdk-devbind –bind=vfio-pci <pci-slot>

	::

	Enable IOMMU

IOMMU was enabled as default on Arm64 platform

Disable IOMMU

echo 1 > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

Hugepage Configuration

Please make sure hugepage was enabled in your host.

	::

	For example:
mount -t hugetlbfs nodev /mnt/huge
echo 4096 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages

Configuring Pod with Control Plane and Data Plane with DPDK Acceration

1, Save the below following YAML to dpdk.yaml.

	::

	apiVersion: v1
kind: Pod
metadata:

name: dpdk

	spec:

	
	nodeSelector:

	beta.kubernetes.io/arch: arm64

containers:
- name: dpdk

image: younglook/dpdk:arm64
command: [“bash”, “-c”, “/usr/bin/l2fwd –huge-unlink -l 6-7 -n 4 –file-prefix=container – -p 3”]
stdin: true
tty: true
securityContext:

privileged: true

volumeMounts:
- mountPath: /dev/vfio

name: vfio

	mountPath: /mnt/huge
name: huge

volumes:
- name: vfio

	hostPath:

	path: /dev/vfio

	name: huge
hostPath:

path: /mnt/huge

2, Create Pod

	::

	
	command:

	kubectl create -f dpdk.yaml

3, Get the details of the running pod from the master

	::

	# kubectl get pods
NAME READY STATUS RESTARTS AGE
dpdk 1/1 Running 0 30s

Verifying DPDK Demo Application

	::

	# kubectl logs dpdk
Port statistics ====================================
Statistics for port 0 ——————————
Packets sent: 7743
Packets received: 675351868
Packets dropped: 675229528
Statistics for port 1 ——————————
Packets sent: 6207
Packets received: 675240108
Packets dropped: 675345661
Aggregate statistics ===============================
Total packets sent: 13950
Total packets received: 1350594777
Total packets dropped: 1350577990
==

Contacts

Bin Lu: bin.lu@arm.com

3. SRIOV CNI with PF Mode Deployment on Arm Server

3.1. Abstract

This document gives a brief introduction on how to deploy SRIOV CNI with PF mode for data plane.

3.2. Introduction

As we know, in some cases we need to deploy multiple network interfaces
with data-plane acceration for single Pod.
Typically, in production area(5G, Edge computing),
one interface we used for control plane, it usually will be flannel.
For data plane, sriov cni + DPDK has the best throughput and the lowest lantency.
In this case, I will introduce sriov cni with PF mode firstly.
SRIOV with PF mode is always used in Edge computing.
Because sriov NIC is not so common on Edge computing.
And also PF mode is used as vFirewall, vPorxy in data center.

NIC with SR-IOV capabilities works by introducing the idea of physical functions (PFs)
and virtual functions (VFs).
In general, PF is used by host.
Each VFs can be treated as a separate physical NIC and assigned to one container,
and configured with separate MAC, VLAN and IP, etc.
If we want the best networking performance for Pods, this should be the best solution.

For demo purpose, I suggest that we use Kubeadm to deploy a Kubernetes cluster firstly.
Then I will give out a typical deployment scenario with SRIOV data plane interface added.

3.3. Use Case Architecture

Kubelet is responsible for establishing the network interfaces for each pod;
it does this by invoking its configured CNI plugin.
When Multus is invoked, it recovers pod annotations related to Multus,
in turn, then it uses these annotations to recover a Kubernetes custom resource definition (CRD),
which is an object that informs which plugins to invoke
and the configuration needing to be passed to them.

3.4. Basic Information about Environment

Cluster Info

In this case, we deploy master and slave as one node.
Suppose it to be: 192.168.1.2

In 192.168.1.2, 2 NIC as required.
Suppose it to be: eth0, eth1, eth0 is used to be controle plane, and eth1 is used to be data plane.

3.4.1. Deploy Kubernetes

Please see link(https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/) as reference.

3.4.2. Rbac Added (optional)

Please make sure that rbac was added for Kubernetes cluster.
here we name it as rbac.yaml:

	::

	apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:

name: fabric8-rbac

	subjects:

	
	kind: ServiceAccount
Reference to upper’s metadata.name
name: default
Reference to upper’s metadata.namespace
namespace: default

	roleRef:

	kind: ClusterRole
name: cluster-admin
apiGroup: rbac.authorization.k8s.io

command:

	::

	kubectl create -f rbac.yaml

3.4.3. Creat CRD

Please make sure that CRD was added for Kubernetes cluster.
Here we name it as crdnetwork.yaml:

	::

	apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:

name must match the spec fields below, and be in the form: <plural>.<group>
name: networks.kubernetes.com

	spec:

	# group name to use for REST API: /apis/<group>/<version>
group: kubernetes.com
version name to use for REST API: /apis/<group>/<version>
version: v1
either Namespaced or Cluster
scope: Namespaced
names:

plural name to be used in the URL: /apis/<group>/<version>/<plural>
plural: networks
singular name to be used as an alias on the CLI and for display
singular: network
kind is normally the CamelCased singular type. Your resource manifests use this.
kind: Network
shortNames allow shorter string to match your resource on the CLI
shortNames:
- net

command:

	::

	kubectl create -f crdnetwork.yaml

3.4.4. Create Flannel-network for Control Plane

Create flannel network as control plane.
Here we name it as flannel-network.yaml:

	::

	apiVersion: “kubernetes.com/v1”
kind: Network
metadata:

name: flannel-conf

plugin: flannel
args: ‘[

	{

	“masterplugin”: true,
“delegate”: {

“isDefaultGateway”: true

}

}

]’

command:

	::

	kubectl create -f flannel-network.yaml

3.4.5. Create Sriov-network for Data Plane

Create sriov network with PF mode as data plane.
Here we name it as sriov-network.yaml:

	::

	apiVersion: “kubernetes.com/v1”
kind: Network
metadata:

name: sriov-conf

plugin: sriov
args: ‘[

	{

	
“master”: “eth1”,
“pfOnly”: true,
“ipam”: {

“type”: “host-local”,
“subnet”: “192.168.123.0/24”,
“rangeStart”: “192.168.123.2”,
“rangeEnd”: “192.168.123.10”,
“routes”: [

{ “dst”: “0.0.0.0/0” }

],
“gateway”: “192.168.123.1”

}

}

]’

command:

	::

	kubectl create -f sriov-network.yaml

3.5. CNI Installation

Firstly, we should deploy all CNI plugins. The build process is following:

	::

	git clone https://github.com/containernetworking/plugins.git
cd plugins
./build.sh
cp bin/* /opt/cni/bin

To deploy control plane and data plane interfaces, besides the Flannel CNI and SRIOV CNI,
we need to deploy the Multus [https://github.com/Intel-Corp/multus-cni]. The build process of it is as:

	::

	git clone https://github.com/Intel-Corp/multus-cni.git
cd multus-cni
./build
cp bin/multus /opt/cni/bin

To use the Multus [https://github.com/Intel-Corp/multus-cni] CNI,
we should put the Multus CNI binary to /opt/cni/bin/ where the Flannel CNI and SRIOV
CNIs are put.

The build process of it is as:

	::

	git clone https://github.com/hustcat/sriov-cni.git
cd sriov-cni
./build
cp bin/* /opt/cni/bin

3.6. CNI Configuration

The following multus CNI configuration is located in /etc/cni/net.d/, here we name it
as multus-cni.conf:

	::

	
	{

	“name”: “minion-cni-network”,
“type”: “multus”,
“kubeconfig”: “/etc/kubernetes/admin.conf”,
“delegates”: [{

“type”: “flannel”,
“masterplugin”: true,
“delegate”: {

“isDefaultGateway”: true

}

}]

}

command:

	::

	
	step1, remove all files in /etc/cni/net.d/

	rm /etc/cni/net.d/* -rf

step2, copy /etc/kubernetes/admin.conf into each nodes.

step3, copy multus-cni.conf into /etc/cni/net.d/

	step4, restart kubelet

	systemctl restart kubelet

3.7. Configuring Pod with Control Plane and Data Plane

1, Save the below following YAML to pod-sriov.yaml.
In this case flannle-conf network object act as the primary network.

	::

	apiVersion: v1
kind: Pod
metadata:

name: pod-sriov
annotations:

	networks: ‘[

	{ “name”: “flannel-conf” },
{ “name”: “sriov-conf” }

]’

	spec: # specification of the pod’s contents

	containers:
- name: pod-sriov

image: “busybox”
command: [“top”]
stdin: true
tty: true

2, Create Pod

	::

	
	command:

	kubectl create -f pod-sriov.yaml

3, Get the details of the running pod from the master

	::

	# kubectl get pods
NAME READY STATUS RESTARTS AGE
pod-sriov 1/1 Running 0 30s

3.8. Verifying Pod Network

	::

	# kubectl exec pod-sriov – ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

	inet6 ::1/128 scope host

	valid_lft forever preferred_lft forever

	3: eth0@if124: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue

	link/ether 0a:58:0a:e9:40:2a brd ff:ff:ff:ff:ff:ff
inet 10.233.64.42/24 scope global eth0

valid_lft forever preferred_lft forever

	inet6 fe80::8e6:32ff:fed3:7645/64 scope link

	valid_lft forever preferred_lft forever

	4: net0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000

	link/ether 52:54:00:d4:d2:e5 brd ff:ff:ff:ff:ff:ff
inet 192.168.123.2/24 scope global net0

valid_lft forever preferred_lft forever

	inet6 fe80::5054:ff:fed4:d2e5/64 scope link

	valid_lft forever preferred_lft forever

3.9. Contacts

Bin Lu: bin.lu@arm.com

ARM64 Hardware Platform Awareness

This document describes Arm64 specific features for HPA

1. ARM64 ELF hwcaps

The majority of hwcaps are intended to indicate the presence of features
which are described by architected ID registers inaccessible to
userspace code at EL0. These hwcaps are defined in terms of ID register
fields, and should be interpreted with reference to the definition of
these fields in the ARM Architecture Reference Manual.

	HWCAP_FP

	Floating-point.
Functionality implied by ID_AA64PFR0_EL1.FP == 0b0000.

	HWCAP_ASIMD

	Advanced SIMD.
Functionality implied by ID_AA64PFR0_EL1.AdvSIMD == 0b0000.

	HWCAP_EVTSTRM

	The generic timer is configured to generate events at a frequency of
approximately 100KHz.

	HWCAP_AES

	Advanced Encryption Standard.
Functionality implied by ID_AA64ISAR1_EL1.AES == 0b0001.

	HWCAP_PMULL

	Polynomial multiply long (vector)
Functionality implied by ID_AA64ISAR1_EL1.AES == 0b0010.

	HWCAP_SHA1

	SHA1 hash update accelerator.
Functionality implied by ID_AA64ISAR0_EL1.SHA1 == 0b0001.

	HWCAP_SHA2

	SHA2 hash update accelerator.
Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0001.

	HWCAP_CRC32

	CRC32 instruction.
Functionality implied by ID_AA64ISAR0_EL1.CRC32 == 0b0001.

	HWCAP_ATOMICS

	Atomics instruction.
Functionality implied by ID_AA64ISAR0_EL1.Atomic == 0b0010.

	HWCAP_FPHP

	Instructions to convert between half-precision and single-precision, and between half-precision and double-precision.
Functionality implied by ID_AA64PFR0_EL1.FP == 0b0001.

	HWCAP_ASIMDHP

	Indicates whether the Advanced SIMD and Floating-point extension supports half-precision floating-point conversion operations.
Functionality implied by ID_AA64PFR0_EL1.AdvSIMD == 0b0001.

	HWCAP_CPUID

	EL0 access to certain ID registers is available, to the extent
described by Documentation/arm64/cpu-feature-registers.txt.
These ID registers may imply the availability of features.

	HWCAP_ASIMDRDM

	Indicates whether Rounding Double Multiply (RDM) instructions are implemented for Advanced SIMD.
Functionality implied by ID_AA64ISAR0_EL1.RDM == 0b0001.

	HWCAP_JSCVT

	ARMv8.3 adds support for a new instruction to perform conversion
from double precision floating point to integer to match the
architected behaviour of the equivalent Javascript conversion.
Functionality implied by ID_AA64ISAR1_EL1.JSCVT == 0b0001.

	HWCAP_FCMA

	ARM v8.3 adds support for new instructions to aid floating-point
multiplication and addition of complex numbers.
Functionality implied by ID_AA64ISAR1_EL1.FCMA == 0b0001.

	HWCAP_LRCPC

	ARMv8.3 adds new instructions to support Release Consistent
processor consistent (RCpc) model, which is weaker than the
RCsc model.
Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0001.

	HWCAP_DCPOP

	The ARMv8.2-DCPoP feature introduces persistent memory support to the
architecture, by defining a point of persistence in the memory
hierarchy, and a corresponding cache maintenance operation, DC CVAP.
Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0001.

	HWCAP_SHA3

	Secure Hash Standard3 (SHA3)
Functionality implied by ID_AA64ISAR0_EL1.SHA3 == 0b0001.

	HWCAP_SM3

	Commercial Cryptography Scheme.
Functionality implied by ID_AA64ISAR0_EL1.SM3 == 0b0001.

	HWCAP_SM4

	Commercial Cryptography Scheme.
Functionality implied by ID_AA64ISAR0_EL1.SM4 == 0b0001.

	HWCAP_ASIMDDP

	Performing dot product of 8bit elements in each 32bit element
of two vectors and accumulating the result into a third vector.
Functionality implied by ID_AA64ISAR0_EL1.DP == 0b0001.

	HWCAP_SHA512

	Secure Hash Standard
Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0002.

	HWCAP_SVE

	Scalable Vector Extension (SVE) is a vector extension for
AArch64 execution mode for the A64 instruction set of the Armv8 architecture.
Functionality implied by ID_AA64PFR0_EL1.SVE == 0b0001.

2. ARM64 Memory Partitioning and Monitoring (MPAM)

Armv8.4-A adds a feature called Memory Partitioning and Monitoring (MPAM). This has several uses.
Some system designs require running multiple applications or multiple virtual machines concurrently on a system
where the memory system is shared and where the performance of some applications or some virtual machines must
be only minimally affected by other applications or virtual machines. These scenarios are common in enterprise
networking and server systems.
This proposal addresses these scenarios with two approaches that work together under software control:
- Memory/Cache system resource partitioning
- Performance resource monitoring

3. Arm Power State Coordination Interface (PSCI)

PSCI has the following intended uses:
- Provides a generic interface that supervisory software can use to
manage power in the following situations:
- Core idle management.
- Dynamic addition of cores to and removal of cores from the
system, often referred to as hotplug.
- Secondary core boot.
- Moving trusted OS context from one core to another.
- System shutdown and reset.
- Provides an interface that supervisory software can use in conjunction
with Firmware Table (FDT and ACPI) descriptions to support the
generalization of power management code.

4. Arm TrustZone

Arm TrustZone technology provides system-wide hardware isolation for trusted software.
The family of TrustZone technologies can be integrated into any Arm Cortex-A core,
supporting high-performance applications processors, with TrustZone technology for Cortex-A processors.

5. Arm CPU Info Detection

Computing resources should be collected by NFV COE, such as:
- Arm specific:

	CPU Part: indicates the primary part number.

	For example:
0xD09 Cortex-A73 processor.

	CPU Architecture: indicates the architecture code.

	For example:
0xF Defined by CPUID scheme.

	CPU Variant: indicates the variant number of the processor.

	This is the major revision number n in the rn part of
the rnpn description of the product revision status.

	CPU Implementer: indicates the implementer code.

	For example:
0x41 ASCII character ‘A’ - implementer is ARM Limited.

	CPU Revision: indicates the minor revision number of the processor.

	This is the minor revision number n in the pn part of
the rnpn description of the product revision status.

Container4NFV on Arm

	Project

	Container4NFV, https://wiki.opnfv.org/display/container4nfv

	Editors

	Trevor Tao (Arm Ltd) Bin Lu (Arm Ltd)

	Authors

	Trevor Tao (Arm Ltd) Bin Lu (Arm Ltd)

	Abstract

	This document gives a brief introduction on Arm’s work status, strategy and possible
roadmap for Container4NFV on arm64 server platform. The target of the description
is to let you get to know what are Arm’s current capability and future direction
for Container4NFV project.

	1. Container4NFV on Arm
	1.1. Abstract

	1.2. Introduction

	1.3. Architecture

	1.4. Container Networking
	1.4.1. Basic Networking Model

	1.4.2. Multiple Interfaces Support in a Pod

	1.5. Related Projects
	1.5.1. Installer

	1.5.2. Yardstick

	1.5.3. Functest

	1.6. Current Status and Future Plan

	1.7. Contacts

	2. Multiple Flannel Interfaces Deployment for Kubernetes Pod on Arm server
	2.1. Abstract

	2.2. Introduction

	2.3. Use Case Architecture

	2.4. Flannel Configuration
	2.4.1. ConfigMap Added

	2.4.2. 2nd Flannel Container Added

	2.5. CNI Configuration

	2.6. Etcd Based Configuration(Optional)
	2.6.1. Flanneld Configuration based on Etcd

	2.7. Contacts

	3. SRIOV CNI with PF Mode Deployment on Arm Server
	3.1. Abstract

	3.2. Introduction

	3.3. Use Case Architecture

	3.4. Basic Information about Environment
	3.4.1. Deploy Kubernetes

	3.4.2. Rbac Added (optional)

	3.4.3. Creat CRD

	3.4.4. Create Flannel-network for Control Plane

	3.4.5. Create Sriov-network for Data Plane

	3.5. CNI Installation

	3.6. CNI Configuration

	3.7. Configuring Pod with Control Plane and Data Plane

	3.8. Verifying Pod Network

	3.9. Contacts

2. Multiple Flannel Interfaces Deployment for Kubernetes Pod on Arm server

2.1. Abstract

This document gives a brief introduction on how to deploy multiple Flannel interfaces for Kubernetes
Pod on Arm server.
For simplicity, here the word ‘multiple’ is for ‘2’ which can be easily extended to more with the methods
introduced in this document.
Besides Arm server, most of the deployment steps talked in the document can be used on other platforms.

2.2. Introduction

As we know, in some cases we need to deploy multiple network interfaces for a single container. For example,
one interface is used for external data access, the other for internal data access. Originally,
only one interface can be deployed for a separate type of Container Networking Interface(CNI). With the help
of Multus [https://github.com/Intel-Corp/multus-cni] CNI, multile CNIs can be driven with an integrated configution.

Flannel [https://github.com/coreos/flannel] is a widely used solution to configure a layer 3 network fabric designed for Kubernetes. We would
introduce the methods of how to deploy multiple Flannel network interfaces for Kubernetes pod from the
following points:
1. Use Case Architecture
2. Flannel Configuration
3. CNI Configuration
4. Etcd Based Configuration(Optional)
5. Contacts

For project Container4nfv, Arm’s favorite installer for Kubernetes clusters is mainly Compass [https://wiki.opnfv.org/display/compass4nfv/Compass4nfv] now. Arm would try
to give out a typical deployment scenario with Kubernetes networked with 2 flannel interfaces.

2.3. Use Case Architecture

Arm gives out a document on how to deploy Kubernetes on arm64 [https://github.com/kubernetes/website/pull/6511] platform to the Kubernetes community
which uses Flannel as the networking backend. The related Flannel deployment files [https://github.com/kubernetes/website/pull/6511/files] use Flannel docker
image to start the Flannel service.

Figure 1 gives out a typical use case for Kubernetes pod configured with 2 Flannel interfaces.
For this use case, we have to start 2 flanneld processes, each flanneld process listens on a different UDP
port and serves for a different subnet. With the help of Multus [https://github.com/Intel-Corp/multus-cni] CNI, the Flannel CNI would be called twice
to attach 2 Linux veth devices to a pod.

Flanneld has 2 ways to get the network backend configuration data: one is from Kubernetes directly by setting
the option “–kube-subnet-mgr”, in this way as it simply reads the configuration from the file
“/etc/kube-flannel/net-conf.json”; the other way is from the backend datastore Etcd [https://coreos.com/etcd/] which is the default.

In this document, we would mainly give the Flanneld configuration in the 1st way. Anybody interested
in the 2nd way can refer to the section “Etcd Based Configuration”.

2.4. Flannel Configuration

Refer to the Kubernetes installation guide on arm64 [https://github.com/kubernetes/website/pull/6511], the Flanneld is installed as a Kubernetes DaemonSet in the
kube-flannel.yml. Here we give a revised version of this yaml file to start 2 Flannel containers:

2.4.1. ConfigMap Added

To start the 2nd Flannel container process, we add a new ConfigMap named kube-flannel2-cfg which
includes a new net-conf.json from the 1st:

	::

	
	net-conf.json: |

	
	{

	“Network”: “10.3.0.0/16”,
“Backend”: {

“Type”: “udp”,
“Port”: 8286

}

}

2.4.2. 2nd Flannel Container Added

The default Flanneld’s UDP listen port is 8285, we set the 2nd Flanneld to listen to port 8286 and a new subnet.

For the 2nd Flannel container, we use the command as:

	::

	
	name: kube-flannel2

image: quay.io/coreos/flannel:v0.8.0-arm64
command: [“/opt/bin/flanneld”, “–ip-masq”, “–kube-subnet-mgr”, “–subnet-file=/run/flannel/subnet2.env”]

which outputs the subnet file to /run/flannel/subnet2.env for the 2nd Flannel CNI to use.

And mount the 2nd Flannel ConfigMap to /etc/kube-flannel/ for the 2nd Flanneld container process:

	::

	volumeMounts:
- name: run

mountPath: /run

	name: flannel-cfg2
mountPath: /etc/kube-flannel/

2.5. CNI Configuration

To deploy 2 Flannel interfaces, besides the Flannel CNI, we need to deploy the Multus [https://github.com/Intel-Corp/multus-cni]. The build process of it is as:

	::

	git clone https://github.com/Intel-Corp/multus-cni.git
cd multus-cni
./build
cp bin/multus /opt/cni/bin

To use the Multus [https://github.com/Intel-Corp/multus-cni] CNI, we should put the Multus CNI binary to /opt/cni/bin/ where the Flannel CNI and other
CNIs are put.

The following CNI configuration sample for 2 Flannel interfaces is located in /etc/cni/net.d/, here we name it
as 10-2flannels.conf:

	::

	
	{

	“name”: “flannel-networks”,
“type”: “multus”,
“delegates”: [

	{

	“type”: “flannel”,
“name”: “flannel.2”,
“subnetFile”: “/run/flannel/subnet2.env”,
“dataDir”: “/var/lib/cni/flannel/2”,
“delegate”: {

“bridge”: “kbr1”,
“isDefaultGateway”: false

}

},
{

“type”: “flannel”,
“name”: “flannel.1”,
“subnetFile”: “/run/flannel/subnet.env”,
“dataDir”: “/var/lib/cni/flannel”,
“masterplugin”: true,
“delegate”: {

“bridge”: “kbr0”,
“isDefaultGateway”: true

}

}

]

}

For the 2nd Flannel CNI, it will use the subnet file /run/flannel/subnet2.env instead of the default /run/flannel/subnet.env,
which is generated by the 2nd Flanneld process, and the subnet data would be output to the directory:
/var/lib/cni/flannel/2

Here we set the 1st Flannel interface as the default gateway to route traffic to outside world.

2.6. Etcd Based Configuration(Optional)

Etcd [https://coreos.com/etcd/] is an open-source distributed key value store that provides shared configuration and service discovery.
It can be run as a separate process or as as a cluster [https://coreos.com/etcd/docs/latest/v2/clustering.html].
For arm64 support, the environment variable or etcd option “ETCD_UNSUPPORTED_ARCH=arm64” should be set before
running the etcd process.

We use etcdctl [https://coreos.com/etcd/docs/latest/dev-guide/interacting_v3.html] tool to set the etcd key-value used for Flannel backend configuration.

For the 1st network, the etcd prefix is ‘/coreos.com/network/config’, and set the subnet to “10.1.0.0/16”:

	::

	etcdctl set /coreos.com/network/config ‘{ “Network”: “10.1.0.0/16”, “Backend”: {“Type”:”udp”, “Port”:8285}}’

or:

	::

	etcdctl set /coreos.com/network/config ‘{ “Network”: “10.1.0.0/16”}’

For the 2nd network, the etcd prefix is ‘/coreos.com/network2/config’, and set the subnet to “10.3.0.0/16” with
UDP port 8286:

	::

	etcdctl set /coreos.com/network2/config ‘{ “Network”: “10.3.0.0/16”, “Backend”: {“Type”:”udp”, “Port”:8286}}’

We can show the configuration by:

	::

	etcdctl get /coreos.com/network/config
etcdctl get /coreos.com/network2/config

2.6.1. Flanneld Configuration based on Etcd

Refer to the Kubernetes installation guide on arm64 [https://github.com/kubernetes/website/pull/6511], the Flanneld is installed as a Kubernetes DaemonSet in the
kube-flannel.yml. For Flanneld to use the etcd backend, we could change the container start command to use etcd
backend:

	::

	…
containers:
- name: kube-flannel

image: quay.io/coreos/flannel:v0.8.0-arm64
command: [“/opt/bin/flanneld”, “–ip-masq”, “–etcd-endpoints=http://ETCD_CLUSTER_IP1:2379”, “–etcd-prefix=/coreos.com/network”]
securityContext:

privileged: true

env:
- name: POD_NAME

	valueFrom:

	
	fieldRef:

	fieldPath: metadata.name

	name: POD_NAMESPACE
valueFrom:

	fieldRef:

	fieldPath: metadata.namespace

volumeMounts:
- name: run

mountPath: /run

	name: flannel-cfg
mountPath: /etc/kube-flannel/

Here as we don’t use the “–kube-subnet-mgr” option, the last 2 lines of

	::

	
	name: flannel-cfg

mountPath: /etc/kube-flannel/

can be ignored.

To start the 2nd Flanneld process, we can add the 2nd Flanneld container section to kube-flannel.yml just below
the 1st Flanneld container:

	::

	containers:
- name: kube-flannel2

image: quay.io/coreos/flannel:v0.8.0-arm64
command: [“/opt/bin/flanneld”, “–ip-masq”, “–etcd-endpoints=http://ETCD_CLUSTER_IP1:2379”, “–etcd-prefix=/coreos.com/network2”, “–subnet-file=/run/flannel/subnet2.env”]
securityContext:

privileged: true

env:
- name: POD_NAME

	valueFrom:

	
	fieldRef:

	fieldPath: metadata.name

	name: POD_NAMESPACE
valueFrom:

	fieldRef:

	fieldPath: metadata.namespace

volumeMounts:
- name: run

mountPath: /run

The option “-subnet-file” for the 2nd Flanneld is to output a subnet file for the 2nd Flannel subnet configuration
of the Flannel CNI which is called by Multus CNI.

2.7. Contacts

Trevor Tao(Zijin Tao), Yibo Cai, Di Xu, Bin Lu, Song Zhu and Kaly Xin from Arm have made contributions to this document.

Trevor Tao: trevor.tao@arm.com
Yibo Cai: yibo.cai@arm.com
Di Xu: di.xu@arm.com
Bin Lu: bin.lu@arm.com
Song Zhu: song.zhu@arm.com
Kaly xin: kaly.xin@arm.com

OpenRetriever architecture options

1 Architecture options to support only containers on bare metal

To support containers on bare metal without the support of VM-s only a single
VIM is needed.
This architecture option is targeted by OpenRetriever in OPNFV Euphrates, and
this architecture option is considered in the gap analyzis against
OpenStack and
Kubernetes.
Examples: Kubernetes, OpenStack with Zun [https://wiki.openstack.org/wiki/Zun] and Kuryr [https://docs.openstack.org/developer/kuryr/], which as a side effect
also supports VM-s.

2 Architecture options to support containers and VM-s

There are different architecture options to support container based and VM based
VNF-s in OPNFV. This section provides a list of these options with a brief
description and examples.
In the descriptions providing the same API means, that the same set of API-s are
used (like the OpenStack [https://www.openstack.org/] API-s or the Kubernetes [http://kubernetes.io/] API), integrted networks mean,
that the network connections of the workloads can be connected without leaving
the domain of the VIM and shared hardware resources mean that it is possible to
start a workload VM and a workload container on the same physical host.

2.1 Separate VIM-s

There is a separate VIM for VM-s and a separate for containers, they use
different hardware pools, they provide different API-s and their networks are
not integrated.
Examples: A separate OpenStack instance for the VM-s and a separate Kubernetes [http://kubernetes.io/]
instance for the containers.

2.2 Single VIM

One VIM supports both VM-s and containers using the same hardware pool, with
the same API and with integrated networking solution.
Examples: OpenStack with Zun [https://wiki.openstack.org/wiki/Zun] and Kuryr [https://docs.openstack.org/developer/kuryr/] or Kubernetes [http://kubernetes.io/] with Kubevirt [https://github.com/kubevirt/], Virtlet [https://github.com/Mirantis/virtlet] or
similar.

2.3 Combined VIM-s

There are two VIM-s from API perspective, but usually the VIM-s share hardware
pools on some level. This option have suboptions.

2.3.1 Container VIM on VM VIM

A container VIM is deployed on top of resources managed by a VM VIM, they share
the same hardware pool, but they have separate domains in the pool, they provide
separate API-s and there are possibilities to integrate their networks.
Example: A Kubernetes [http://kubernetes.io/] is deployed into VM-s or bare metal hosts into an
OpenStack deployment optionally with Magnum. Kuryr [https://docs.openstack.org/developer/kuryr/] integrates the networks on
some level.

2.3.2 VM VIM on Container VIM

A VM VIM is deployed on top of resources managed by a container VIM, they do not
share the same hardware pool, provide different API and do not have integrated
networks.
Example: Kolla Kubernetes [https://github.com/openstack/kolla-kubernetes] or
OpenStack Helm [https://wiki.openstack.org/wiki/Openstack-helm].

OpenRetriever Gap Analysis with Kubernetes v1.5

This section provides users with OpenRetriever gap analysis regarding feature
requirement with Kubernetes Official Release. The following table lists the use
cases / feature requirements of container integrated functionality, and its gap
analysis with Kubernetes Official Release.

	Use Case / Requirement

	Supported in v1.5

	Notes

	Manage conainter and virtual machine in the same platform.

	No

	There are some ways how Kubernetes could manage VM-s:

	Kubevirt [https://github.com/kubevirt/kubevirt]

	Kubernetes can start rkt and with
rkt it is possible to start VM-s [https://coreos.com/rkt/docs/latest/running-kvm-stage1.html]

	Virtlet [https://github.com/Mirantis/virtlet]

	Hypercontainer [https://github.com/kubernetes/frakti]

	Kubernetes support multiple networks.

	No

	As VNF needs at least three interfaces. Management,control plane, data plane. CNI [https://github.com/containernetworking/cni/blob/master/SPEC.md] already supports multiple
interfaces in the API definition.

	Multus [https://github.com/Intel-Corp/multus-cni]

	CNI-Genie [https://github.com/Huawei-PaaS/CNI-Genie]

	A solution built into Kubernetes [https://docs.google.com/document/d/1TW3P4c8auWwYy-w_5afIPDcGNLK3LZf0m14943eVfVg/]

	Kubernetes support NAT-less connections to a container

	No

	SIP/SDP and SCTP are not working with NAT-ed networks

	Kubernetes scheduling support CPU binding，NUMA features

	No

	The kubernetes schedular don’t support these features

	DPDK need to support CNI

	No

	DPDK is the technology to accelerate the data plane. Container need
support it, the same with virtual machine.

	SR-IOV can support CNI (Optional)

	No

	SR-IOV could let container get high performance

OpenRetriever Gap Analysis with OpenStack

This section provides a gap analyzis between the targets of OpenRetriever for
release Euphrates (E) or later and the features provided by OpenStack in release
Ocata. As the OPNFV and OpenStack releases tend to change over time this
analyzis is planned to be countinously updated.
During the analyzis all OpenStack projects considered.

(Editors note: Maybe we should define a scope of OpenStack projects which is
considered. All OpenStack projects can mean anything.)

The following table lists the use cases / feature requirements of container
integrated functionality, and its gap analysis with OpenStack.

	Use Case / Requirement

	Related OpenStack
project

	Notes

	Status

	Manage container and virtual machine lifecycle with the
same NB API

	Zun [https://wiki.openstack.org/wiki/Zun] or nova-docker
driver

	Magnum [https://wiki.openstack.org/wiki/Magnum] can deploy a Container Orchestration Engine (COE), but does
not provide any lifecycle management operations to the containers
deployed in the COE.
Zun [https://wiki.openstack.org/wiki/Zun] provides lifecycle management support for the containers
deployed in the COE via Nova API, but not all COE API operations are
supported.
nova-docker driver provided support for container lifecycle
management without a COE (and Magnum), but it was deprecated due to
lack of community support. A fork of the original nova-docker driver
is maintained by the Zun team to provide support for the sandbox
containers.
Note: Support for this is not targeted in OPNFV release E.

	Open

	Container private registry to store container images

	Swift [https://wiki.openstack.org/wiki/Swift], Cinder [https://wiki.openstack.org/wiki/Cinder],
Glance [https://wiki.openstack.org/wiki/Glance], Glare [https://github.com/openstack/glare]

	Container images need a storage backed from where the COE can serve
the registry. This backend should be accessible and should be
supported by the COE.
As a workaround it is possible to install a registry backend to a VM
, but it is more optimal to use the possible backends already
available in OpenStack, like Swift [https://wiki.openstack.org/wiki/Swift], Cinder [https://wiki.openstack.org/wiki/Cinder], Glance [https://wiki.openstack.org/wiki/Glance] or Glare [https://github.com/openstack/glare].

	Open

	Kuryr [https://wiki.openstack.org/wiki/Kuryr] needs to support MACVLAN and IPVLAN

	Kuryr [https://wiki.openstack.org/wiki/Kuryr]

	Using MACVLAN or IPVLAN could provide better network performance.
It is planned for Ocata.

	Open

	Kuryr [https://wiki.openstack.org/wiki/Kuryr] Kubernetes [https://kubernetes.io/] integration is needed

	Kuryr [https://wiki.openstack.org/wiki/Kuryr]

	It is done in the frame of OpenRetriever.

	Targeted to
OPNFV release E
/OpenStack Ocata

	HA support for Kuryr [https://wiki.openstack.org/wiki/Kuryr]

	Kuryr [https://wiki.openstack.org/wiki/Kuryr]

	
	Targeted to
OPNFV release E
/OpenStack Ocata

	HA support for Zun [https://wiki.openstack.org/wiki/Zun]

	Zun [https://wiki.openstack.org/wiki/Zun]

	
	Open

OpenRetriever Gap Analysis with OPNFV Installer

This section provides users with OpenRetriever gap analysis regarding feature
requirement with OPNFV Installer in Danube Official Release. The following
table lists the use cases / feature requirements of container integrated
functionality, and its gap analysis with OPNFV Installer in Danube Official
Release. OPNFV installer should support them.

	Use Case / Requirement

	Supported in Danube

	Notes

	Use Openstack Magnum to install container environment

	No

	Magnum is supported in Openstack Official Release, but it’s not
supported in OPNFV Installer. Magnum is the place where container
can be installed in OPNFV.

	Use Openstack Ironic to supervise bare metal machine

	No

	Container could be installed in bare metal machine. Ironic provides
bare metal machine, work with Magnum together to setup a container
environment, be installed in OPNFV.

	Use Openstack Kuryr to provide network for container

	No

	Container has its own network solution. Container needs to connect
with virtual machines, and Kuryr which use Neutron provides network
service is the best choice now.

OpenRetriever Gap Analysis

	Project

	OpenRetriever, https://wiki.opnfv.org/display/openretriever

	Editors

	Xuan Jia (China Mobile)

	Authors

	Xuan Jia (China Mobile)

	Abstract

	This document provides the users with top-down gap analysis regarding
OpenRetriever feature requirements with OPNFV Installer, OpenStack
Official Release and Kubernetes Official Release.

	OpenRetriever architecture options
	1 Architecture options to support only containers on bare metal

	2 Architecture options to support containers and VM-s

	OpenRetriever Gap Analysis with OPNFV Installer

	OpenRetriever Gap Analysis with OpenStack

	OpenRetriever Gap Analysis with Kubernetes v1.5

NGVS Requirement Analysis

	Project

	OpenRetriever, https://wiki.opnfv.org/display/openretriever

	Editors

	Xuan Jia (China Mobile)

	Authors

	Xuan Jia (China Mobile)

	Abstract

	This provides NGVS requirements.

	Motivation

	Use cases
	vCPE

	IOT/ MEC

	5G

	Security

	Detailed Requirements
	Multiple compute types

	Multiple scheduling techniques

	Highly distributed environments

	Software Survey Candidates

	Additional Points to Revisit

 Created by the OPNFV OpenRetriever Team

Amar Kapadia

Wassim Haddad

Heikki Mahkonen

Srinivasa Addepalli

v1.0 5/3/17

v1.1 5/16/17

v1.2 7/26/17

Motivation

The OpenRetriever team believes that existing and new NFV workloads can
benefit from a new VIM placement and scheduling component. We further
believe that these same requirements will be very useful for edge
computing scheduling. This document aims to document requirements for
this effort.

By placement and scheduling, we mean:

	Choose which hardware node to run the VNF on factors such as AAA, ML prediction or MANO

	Start the VNF(s) depending on a trigger e.g. receiving requests such as DHCP,DNS or upon data packet or NULL trigger

We use the generic term “scheduler” to refer to the placement and
scheduling component in the rest of this document. We are not including
lifecycle management of the VNF in our definition of the scheduler.

At a high level, we believe the VIM scheduler must:

	Support virtual machines, containers and unikernels

	Support legacy and event-driven scheduling

	By legacy scheduling we mean scheduling without any trigger (see above)

i.e. the current technique used by schedulers such as OpenStack Nova.

	By event-driven scheduling we mean scheduling with a trigger (see above).

We do not mean that the unikernel or container that is going to run the VNF is
already running . The instance is started and torn-down in response to traffic.
The two step process is transparent to the user.

	More specialized higher level schedulers and orchestration systems may be

run on top e.g. FaaS (similar to AWS Lambda) etc.

	Serverless vs. FaaS vs. Event-Driven Terminology

Serverless: By serverless, we mean a general PaaS concept where the user does not have
to specify which physical or virtual compute resource their code snippet or function
will run on. The code snippet/function is executed in response to an event.

FaaS: We use this term synonymously with serverless.

Event-Driven: By event-driven, we mean an entire microservice or service (as opposed a
code snippet) is executed in response to an event.

	Work in distributed edge environments

Please provide your inputs. Once we have a comprehensive list of
requirements, we will investigate what the right open source solution
should be, and how to influence that particular project.

Use cases

A number of NFV use cases can benefit from a new VIM scheduler:

vCPE

vCPE can benefit from a new scheduler in two ways:

1. uCPE devices have very few cores (4-8 typical). Running statically scheduled
VMs is inefficient. An event-driven scheduler would help optimize the hardware resources and increase capacity.

2. vCPE is a bursty NFV use case, where services are not “on” all the time.
Legacy provisioning of virtual machines for each VNF significantly reduces
resource utilization, which in turn negatively impacts the
total-cost-of-ownership (TCO). Recent Intel studies have shown, in certain
cases, vCPE saves 30-40% TCO over physical functions. This number is hardly
compelling, we believe it needs to be significantly higher to be of any
interest. This can be accomplished by increasing utilization, which in turn
can be achieved through event-driven scheduling.

IOT/ MEC

IOT & multi-access edge computing
(*MEC* [http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing])
share many of the same characteristics as the uCPE. Though serverless
functions increase the resource utilization, it does not provide ability
for application developers to introduce traditional security functions.
Serverless services that can be brought up on-demand basis provide
increases resource utilization as well as ability to introduce security
functions within the service. Additionally, there is need for low
latency and high security as well. A new scheduler can help with these
needs.

5G

5G brings with it a number of above requirements, but perhaps the one
that stands out the most is price/ performance. By using containers and
unikernels, the price/ performance ratio can be significantly improved.
(Containers or unikernels result in ~10x density with Legacy scheduling;
higher density is possible with event-driven scheduling.) 5G will also
bring MEC and IOT needs from the prior use case.

Security

Many traditional services are always-on. Always-on services provide
enough time for attackers to find vulnerabilities and exploit them. By
bringing up workloads on demand basis and terminating them upon
completion of its usage, closes the time advantage attackers have. For
example, in three tier architecture of “Web”, “App” and “DB”, following
on demand bring up would reduce the attack surface

	On demand bring up of “DB” service upon “APP” layer request.

	On demand bringup of “APP” service upon “Web” layer authenticates the user.

	On demand bring up of “Web” service upon “DNS” request or upon seeing “SYN” packet

Workloads can be brought down upon inactivity or using some application
specific methods. Thin services (implemented using unikernels & Clear
containers) and fast schedulers are required to enable this kind of
security.

Detailed Requirements

Multiple compute types

	Requirement

	Details

	Support for virtual machines

	VMs are the most common form of VNFs, and are
not going away anytime soon. A scheduler must
be able to support VMs. In theory, the MANO
software could use two VIMs: one for VMs and
another for containers/ unikernels. However,
we believe this is a suboptimal solution since
the operational complexity doubles - now the
ops team has to deal with two VIM software
layers. Also, networking coordination between
the two VIM layers becomes complex.

NOTE: Bare-metal server scheduling, e.g.
OpenStack Ironic, is out-of-scope for this
document.

	Support containers

	This need is clear, the future of VNFs seems
to be containerized VNFs. Containers are 10x
more dense than VMs and boot 10x faster.
Containers will also accelerate the move to
cloud-native VNFs. Some users may want nested
scheduling e.g. containers in VMs or
containers in containers. Nested scheduling is
out-of-scope for this document. We will only
focus on one layer of scheduling problem and
expect the other layer of scheduler to be
distinct and separate.

	Support unikernels

	Unikernels are lightweight VMs; with the same
density of containers, but faster boot times
than containers. Since unikernels are VMs and
incredible small surface area, they have
rock-solid security characteristics.
Unikernels are also higher performance than
VMs. For these reasons, unikernels could play
an important role in NFV. The downsides with
unikernels are i) they are new, ii) often tied
to a programming language and iii) they
require a software recompile. Unikernels are
an ideal fit for micro-VNFs.
More specifically:

	Need VNFs to be highly secure by reducing
significantly the attack surface

	Need to be able to schedule to NFVI with
high performance OVS-less services
chaining (e.g. through shared memory) that
can significantly improve performance

	Colocation

	We need support for affinity/anti-affinity
constraints on VNF compute type (i.e. VM,
unikernel, container). This will make
colocation of different types of VNF compute
types on the same host possible, if needed.

	Support all compute types on one SFC

	Since VNFs are procured from different vendors
, it is possible to get a mix of compute types
: VMs, containers, unikernels; and it should
be possible to construct a service function
chain from heterogeneous compute types.

	Unified API for all compute types

	Even though it is theoretically possible to
have different APIs for different compute
types and push the problem to the MANO layer,
this increases the overall complexity for the
solution. For this reason, the API needs to be
unified and consistent for different compute
types.

	Hardware awareness

	Ability to place workloads with specific
hardware or underlying infrastructure
capabilities (e.g. Intel EPA 1, FD.io,
Smart NICs, Trusted Execution Environment,
shared memory switching etc.)

	Rich networking

	The new VIM scheduler needs to be supported by
rich networking features currently available
to OpenStack Nova through OpenStack Neutron
(See document outlining K8s *networking* [https://docs.google.com/document/d/1TW3P4c8auWwYy-w_5afIPDcGNLK3LZf0m14943eVfVg/edit?ts=5901ec88] requirements as an example):

	Ability to create multiple IP addresses/VNF

	Networks not having cluster-wide
connectivity; not having visibility to each
other

	Multi-tenancy: i) support traffic isolation
between compute entities belonging to
different tenants, ii) support overlapping
IP addresses across VNFs.

	Limit services such as load balancing,
service discovery etc. on certain network
interfaces (see additional `document
<https://docs.google.com/document/d/1mNZZ2l
L6PERBbt653y_hnck3O4TkQhrlIzW1cIc8dJI/edit>
`__).

	L2 and L3 connectivity (?)

	Service Discovery

	Image repository & shared storage

	
	Centralized/distributed image repository

	Support shared storage (e.g. OpenStack
Cinder, K8s volumes etc.)

	1

	Intel EPA includes DPDK, SR-IOV, CPU and NUMA pinning, Huge Pages
etc.

[OPEN QUESTION] What subset of the Neutron functionality is required
here?

Multiple scheduling techniques

	Requirement

	Details

	Legacy scheduling

	This is the current technique used by OpenStack Nova and
container orchestration engines. Legacy scheduling needs to
be supported as-is.

	Event-driven scheduling

	This applies only to unikernels, since unikernels are the
only compute type that can boot at packet RTT. Thus, the
requirement is to be able to schedule and boot unikernel
instances in response to events with <30ms of ms (e.g.,
event-driven type of scheduling) as a must-have and <10ms
as a nice-to-have.

	Distributed Scheduling

	Since services need to be brought up at packet RTT, there
could be requirement to distribute the scheduling across
compute nodes.

	Multi Stage scheduling

	To enable scheduling of services at packet RTT, there is a
need to divide the scheduling to at least two stages -
Initial stage where multiple service images are uploaded to
candidate compute nodes and second stage where distributed
scheduler bring up the service using the locally cached
images.

[OPEN QUESTION] What subset of the rich scheduler feature-set is
required here? (e.g. affinity, anti-affinity, understanding of dataplane
acceleration etc.)

Highly distributed environments

There are two possibilities here. A) The entire VIM will be in an edge
device and the MANO software will have to deal with 10s or 100s of
thousands of VIM instances. B) The alternative is that the VIM itself
will manage edge devices, i.e. the MANO software will deal with a
limited number of VIM instances. Both scenarios are captured below.

	Requirement

	Details

	Small footprint

	It should be possible to run the VIM scheduler in 1-2 cores.

	Nodes across WAN

	It should be possible to distribute the VIM scheduler across nodes
separated by long RTT delays (i.e. WAN).

Software Survey Candidates

Once the survey is complete, we will evaluate the following software
stacks against those requirements. Each survey, either conducted in
person and/or via documentation review, will consist of:

	Architecture overview

	Pros

	Cons

	Gap analysis

	How gaps can be addressed

Each survey is expected to take 3-4 weeks.

	CNCF K8s

	Srini (talk to Xuan, Frederic, study gap analysis)

	Docker Swarm

	

	VMware Photon

	Srikanth

	Intel Clear Container

	Srini

	Intel Ciao

	Srini

	OpenStack Nova

	

	Mesos

	Srikanth

	Virtlet (VM scheduling by K8s)

	Amar

	Kubelet (VM scheduling by K8s)

	Amar

	Kuryr (K8s to Neutron interface)

	Prem

	RunV (like RunC) - can it support a VM

	

	Nelson distributed container framework

	

	Nomad

	

Additional Points to Revisit

	Guidance on how to create immutable infrastructure with complete configuration, and benefits to performance and security

	Guidance on API - VNFM vs. VIM

Container4NFV Release Notes

	Project

	OpenRetriever, https://wiki.opnfv.org/display/openretriever

	Editors

	Xuan Jia (China Mobile)

	Authors

	Xuan Jia (China Mobile)

	Abstract

	Container4NFV Release Notes.

	Container4NFV E release Notes

	Container4NFV F release Notes

Container4NFV E release Notes

	Gap analysis for openstack,kubernetes,opnfv installer

	Container architecture options

	Joid could support Kubernetes

	Using vagrant tool to setup an env with DPDK enabled.

Container4NFV F release Notes

	Enable Multus in Kubernetes

	Enable SR-IOV in Kubernetes

	Support ARM platform

Clearwater implementation for OPNFV

CONTAINER4NFV setup a Kubernetes cluster on VMs running with Vagrant and kubeadm.

kubeadm assumes you have a set of machines (virtual or bare metal) that are up and running. In this way we can get a cluster with one master node and 2 workers (default). If you want to increase the number of workers nodes, please check the Vagrantfile inside the project.

Is Clearwater suitable for Network Functions Virtualization?

Network Functions Virtualization or NFV is, without any doubt, the hottest topic in the telco network space right now. It’s an approach to building telco networks that moves away from proprietary boxes wherever possible to use software components running on industry-standard virtualized IT infrastructures. Over time, many telcos expect to run all their network functions operating at Layer 2 and above in an NFV environment, including IMS. Since Clearwater was designed from the ground up to run in virtualized environments and take full advantage of the flexibility of the Cloud, it is extremely well suited for NFV. Almost all of the ongoing trials of Clearwater with major network operators are closely associated with NFV-related initiatives.

About Clearwater

Clearwater [http://www.projectclearwater.org/about-clearwater/] follows IMS [https://en.wikipedia.org/wiki/IP_Multimedia_Subsystem] architectural principles and supports all of the key standardized interfaces expected of an IMS core network. But unlike traditional implementations of IMS, Clearwater was designed from the ground up for the Cloud. By incorporating design patterns and open source software components that have been proven in many global Web applications, Clearwater achieves an unprecedented combination of massive scalability and exceptional cost-effectiveness.

Clearwater provides SIP-based call control for voice and video communications and for SIP-based messaging applications. You can use Clearwater as a standalone solution for mass-market VoIP services, relying on its built-in set of basic calling features and standalone susbscriber database, or you can deploy Clearwater as an IMS core in conjunction with other elements such as Telephony Application Servers and a Home Subscriber Server.

Clearwater was designed from the ground up to be optimized for deployment in virtualized and cloud environments. It leans heavily on established design patterns for building and deploying massively scalable web applications, adapting these design patterns to fit the constraints of SIP and IMS. The Clearwater architecture [http://www.projectclearwater.org/technical/clearwater-architecture/] therefore has some similarities to the traditional IMS architecture but is not identical.

	All components are horizontally scalable using simple, stateless load-balancing.

	All long lived state is stored on dedicated “Vellum” nodes which make use of cloud-optimized storage technologies such as Cassandra. No long lived state is stored on other production nodes, making it quick and easy to dynamically scale the clusters and minimizing the impact if a node is lost.

	Interfaces between the front-end SIP components and the back-end services use RESTful web services interfaces.

	Interfaces between the various components use connection pooling with statistical recycling of connections to ensure load is spread evenly as nodes are added and removed from each layer.

Clearwater Architecture

[image: Clearwater Architecture]

Quickstart

This repository contains instructions and resources for deploying Metaswitch’s Clearwater project with Kubernetes.

If you need more information about Clearwater project please checkout our
[documentation](https://github.com/opnfv/container4nfv/blob/master/docs/release/userguide/clearwater-project.rst)
or the official repository [https://github.com/Metaswitch/clearwater-docker].

Exposed Services

The deployment exposes:

	the Ellis web UI on port 30080 for self-provisioning.

	STUN/TURN on port 3478 for media relay.

	SIP on port 5060 for service.

	SIP/WebSocket on port 5062 for service.

SIP devices can register with bono.:5060 and the Ellis provisioning interface can be accessed at port 30080.

Prerequirement

Install Docker and Vagrant

CONTAINER4NFV uses setup_vagrant.sh to install all resource used by this repository.

container4nfv/src/vagrant# ./setup_vagrant.sh -b libvirt

Instalation

Deploy Clearwater with kubeadm

Check clearwater/clearwater_setup.sh for details about k8s deployment.

container4nfv/src/vagrant/kubeadm_clearwater# ./deploy.sh

Destroy

container4nfv/src/vagrant# ./cleanup.sh

Making calls through Clearwater

Connect to Ellis service

It’s important to connect to Ellis to generate the SIP username, password and domain we will use with the SIP client.
Use your <master ip addres> + port 30080 (k8s default port). If you are not which Ellis’s url is, please check inside your master node.

kubeadm_clearwater# vagrant ssh master
master@vagrant# ifconfig eth0 | grep "inet addr" | cut -d ':' -f 2 | cut -d ' ' -f 1
192.168.121.3

In your browser connect to <master_ip>:30080 (ex. 192.168.121.3:30080).

After that, signup and generate two users. The signup key is secret. Ellis will automatically allocate you a new number and display
its password to you. Remember this password as it will only be displayed once.
From now on, we will use <username> to refer to the SIP username (e.g. 6505551234) and <password> to refer to the password.

Config and install two SIP clients

We’ll use both Twinkle and Blink SIP client. , since we are going to try this out inside a LAN network.
This is, of course, only a local test inside a LAN network. Configure the clients may be a little bit trickie, so we add some screenshots:

Blink setup

	Add <username> and <password>.

[image: Blink SIP client]

	Configure a proxy to k8s.

[image: Blink SIP client]

	Configure the network to use TCP only.

[image: Blink SIP client]
[image: Blink SIP client]

Twinkle setup

	Configure a proxy to k8s.

[image: Twinkle SIP client]

	Add <username> and <password>.

[image: Twinkle SIP client]

	Configure the network to use TCP only.

[image: Twinkle SIP client]

Make the call

[image: Call]

Container4NFV User Guide

	Project

	Container4NFV, https://wiki.opnfv.org/display/openretriever

	Editors

	Xuan Jia (China Mobile)

	Authors

	Xuan Jia (China Mobile)

	Installation

	e release
	Vagrant Setup

	K8s Setup

	Run K8s Example

	K8s Cleanup

	f release
	Vagrant Setup

	Senario:
	k8-nosdn-nofeature-noha

	k8-nosdn-lb-noha

	YardStick test Cases
	opnfv_yardstick_tc080

	Multus implementation for OPNFV
	About Multus

	Multus example

	Nginx implementation for OPNFV
	About Nginx

	Ovsdpdk implementation for OPNFV
	About OvS-dpdk

	Virlet implementation for OPNFV
	About Virlet

	Clearwater implementation for OPNFV
	About Clearwater

	Clearwater Architecture

	Quickstart
	Exposed Services

	Prerequirement
	Install Docker and Vagrant

	Instalation
	Deploy Clearwater with kubeadm

	Destroy

	Making calls through Clearwater
	Connect to Ellis service

	Config and install two SIP clients

	Blink setup

	Twinkle setup

	Make the call

	Kata Containers implementation for OPNFV
	About Kata Containers

Installation

This quickstart shows you how to easily install a Kubernetes cluster on VMs running with Vagrant. You can find the four projects inside container4nfv/src/vagrant and their documentation:
- kubeadm_basic: weave.rst
- kubeadm_multus: multus.rst
- kubeadm_ovsdpdk: ovs-dpdk.rst
- kubeadm_virtlet: virtlet.rst

Vagrant is installed in Ubuntu 16.04 64bit.
vagrant is to create kubernetes cluster using kubeadm.
kubernetes installation by kubeadm can be refered to
https://kubernetes.io/docs/getting-started-guides/kubeadm.

e release

Vagrant Setup

sudo apt-get install -y virtualbox
wget –no-check-certificate https://releases.hashicorp.com/vagrant/1.8.7/vagrant_1.8.7_x86_64.deb
sudo dpkg -i vagrant_1.8.7_x86_64.deb

K8s Setup

git clone http://gerrit.opnfv.org/gerrit/container4nfv -b stable/euphrates
cd container4nfv/src/vagrant/k8s_kubeadm/
vagrant up

Run K8s Example

vagrant ssh master -c “kubectl apply -f /vagrant/examples/virtio-user.yaml”

K8s Cleanup

vagrant destroy -f

f release

Vagrant Setup

	setup_vagrant.sh may install all for you. The project uses vagrant with libvirt as default because of performance.

`
container4nfv/src/vagrant# ./setup_vagrant.sh
`

Consequently, we need to reboot to make libvirtd group effective.

	Deploy:

To test all the projects inside vagrant/ just run the next script:

`
container4nfv/ci# ./deploy.sh
`

Kata Containers implementation for OPNFV

Kata Containers is a new open source project building extremely lightweight virtual machines that seamlessly plug into the containers ecosystem.

CONTAINER4NFV setup a Kubernetes cluster on VMs running with Vagrant and kubeadm.

kubeadm assumes you have a set of machines (virtual or bare metal) that are up and running. In this way we can get a cluster with one master node and 2 workers (default). If you want to increase the number of workers nodes, please check the Vagrantfile inside the project.

About Kata Containers

[Kata Containers](https://katacontainers.io/) is an open source project and community working to build a standard implementation of lightweight Virtual Machines (VMs) that feel and perform like containers, but provide the workload isolation and security advantages of VMs.

The Kata Containers project will initially comprise six components, including the Agent, Runtime, Proxy, Shim, Kernel and packaging of QEMU 2.9. It is designed to be architecture agnostic, run on multiple hypervisors and be compatible with the OCI specification for Docker containers and CRI for Kubernetes.

Kata Containers combines technology from Intel Clear Containers and Hyper runV. The code is hosted on Github under the Apache 2 license and the project is managed by the OpenStack Foundation.

Multus implementation for OPNFV

This quickstart shows you how to easily install a Kubernetes cluster on VMs running with Vagrant. The installation uses a tool called kubeadm which is part of Kubernetes.

kubeadm assumes you have a set of machines (virtual or bare metal) that are up and running. In this way we can get a cluster with one master node and 2 workers (default). If you want to increase the number of workers nodes, please check the Vagrantfile inside the project.

About Multus

[Multus](https://github.com/Intel-Corp/multus-cni) is a CNI proxy and arbiter of other CNI plugins.

With the help of Multus CNI plugin, multiple interfaces can be added at the same time when deploying a pod. Notably, Virtual Network Functions (VNFs) are typically requiring connectivity to multiple network interfaces.

The Multus CNI has the following features:
- It is a contact between the container runtime and other plugins, and it doesn’t have any of its own net configuration, it calls other plugins like flannel/calico to do the real net conf. job.
- Multus reuses the concept of invoking the delegates in flannel, it groups the multi plugins into delegates and invoke each other in sequential order, according to the JSON scheme in the cni configuration.
- No. of plugins supported is dependent upon the number of delegates in the conf file.
- Master plugin invokes “eth0” interface in the pod, rest of plugins(Mininon plugins eg: sriov,ipam) invoke interfaces as “net0”, “net1”.. “netn”.
- The “masterplugin” is the only net conf option of Multus cni, it identifies the primary network. The default route will point to the primary network.

Multus example

[image: Multus Pod example]

Ovsdpdk implementation for OPNFV

This quickstart shows you how to easily install a Kubernetes cluster on VMs running with Vagrant. The installation uses a tool called kubeadm which is part of Kubernetes.

kubeadm assumes you have a set of machines (virtual or bare metal) that are up and running. In this way we can get a cluster with one master node and 2 workers (default). If you want to increase the number of workers nodes, please check the Vagrantfile inside the project.

About OvS-dpdk

Open vSwitch* with the Data Plane Development Kit [OvS-DPDK](http://openvswitch.org/) is a high performance, open source virtual switch.

Using DPDK with OVS gives us tremendous performance benefits. Similar to other DPDK-based applications, we see a huge increase in network packet throughput and much lower latencies.

Senario:

k8-nosdn-nofeature-noha

Using Joid to deploy Kubernetes in bare metal machine
https://build.opnfv.org/ci/job/joid-k8-nosdn-nofeature-noha-baremetal-daily-euphrates/lastBuild/

k8-nosdn-lb-noha

Using Joid to deploy Kubernetes in bare metal machine with load balance enabled
https://build.opnfv.org/ci/job/joid-k8-nosdn-lb-noha-baremetal-daily-euphrates/

YardStick test Cases

opnfv_yardstick_tc080

measure network latency between containers in k8s using ping
https://git.opnfv.org/yardstick/tree/tests/opnfv/test_cases/opnfv_yardstick_tc080.yaml

opnfv_yardstick_tc081

Virlet implementation for OPNFV

This quickstart shows you how to easily install a Kubernetes cluster on VMs running with Vagrant. The installation uses a tool called kubeadm which is part of Kubernetes.

kubeadm assumes you have a set of machines (virtual or bare metal) that are up and running. In this way we can get a cluster with one master node and 2 workers (default). If you want to increase the number of workers nodes, please check the Vagrantfile inside the project.

About Virlet

(Virlet)[https://github.com/Mirantis/virtlet] is a Kubernetes runtime server / (CRI)[http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html] that enables you to run VM workloads based on QCOW2 images. (CRI is what enables Kubernetes to run non-Docker flavors of containers, such as Rkt.)

Virlet gives NFV a new direction. Virtlet itself runs as a DaemonSet, essentially acting as a hypervisor and making the CRI proxy available to run the actual VMs. This way, it’s possible to have both Docker and non-Docker pods run on the same node.

Nginx implementation for OPNFV

This quickstart shows you how to easily install a Kubernetes cluster on VMs running with Vagrant. The installation uses a tool called kubeadm which is part of Kubernetes.

kubeadm assumes you have a set of machines (virtual or bare metal) that are up and running. In this way we can get a cluster with one master node and 2 workers (default). If you want to increase the number of workers nodes, please check the Vagrantfile inside the kubeadm_basic/.

About Nginx

Nginx is a web server which can also be used as a reverse proxy, load balancer and HTTP cache.

 _static/ajax-loader.gif

_images/twinkle02.png
192.168.121.145:

Private Idenity: Associated Public Identities:
6505550111@default.sve.cluster.local 5ip:6505550111@default.sve.cluster.local Configure
Password: ndqn37FD7 —

only shown once New Public dentiy | ~

Private Idenity: Associated Public Identities:
6505550270@defaultsve.cluster.local sip:6505550270@default.sve.cluster.local Configure
Password: zba6HeyKG =

only shown once New Public deniiy | ~

Privat
6505¢

e =

ony shg
B SIP server

SIP account

| 9) Voice mail ST
6505¢ [] Instant message Username*: | 6505550270
Passw

D presence Domain®: [defaultsve.clusterlocal
22 I —

€ RTP audio Organization:

3 SIP protocol

Prival \2? P SIP authentication

6505¢ & Transport/NAT

: Realm:
2 6 Address format

onysng | el Authentication name:

(9 mimers Password: .
Privat f Ring tones AKA OP: 00000000000000000000000000000000
:i‘r: ﬂ Scripts. AKA AME: 0000

oo | (Y Security

Add F

S m — [

_images/twinkle03.png
192.168.121.145:

Private Idenity: Associated Public Identities:
6505550111@default.sve.cluster.local 5ip:6505550111@default.sve.cluster.local Configure
Password: ndqn37FD7 —

only shown once New Public dentiy | ~

Private Identi Associated Public Identities:

6505550270@default.sve.cluster.local sip:6505550270@defautt sve.cluster.local comgure | (R
Password: zba6H6yKG =
ony shown once New Pubic identty +
Twinkle - User profile: sofi

Privat

User profile:
osos ==
Passw User
oyl o Transport/NAT

€2 spserer S transport
Prival @Vﬂi(e"‘ﬂ“ Transport protocol: |TCP =

6505¢ [] Instant message
Pass | @) presence

osm | NAT traversal

= i

@ RTPaudio @ NAT traversal not needed
Privat SIP protocol O Use statically configured public IP address inside SIP messages
Ul 77 Transport/NAT
i | (6 Address format *) Use STUN (does not work for incoming TCP)
onysna |-

(9 Timers
E f Ring tones & Persistent TCP connection

(] Enable NAT keep alive

6505% ﬂ Scripts =
Passw

Add F

| = |

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/clearwater_architecture.png
.« >

State store interfaces:
- Thrift (Cassandra)
- Memcached

- HTTP (Chronos)
- Eted

SIP.
Isc

S LN

Servers

SIP

>
Mg/Mj/Mk

MGCF
I-BCF

_images/multus_pod_example.png
etho interface
MASTER PLUGIN

net0 interface

nett interface

CONTAINERS

_images/blink04.png
Blink Preferences

—~
& O m L g
Accounts Audio Video Chat ScreenSharing Logging | Advanced)

SIP and RTP
‘ Transports: (] Enable UDP UDP port: [Auto || Set SIP ports to 0 for automatic allocation
‘ & Enable TcP Tcp port: [Auto
‘ () Enable TLS TLS port: | Auto|

RTP Ports: | 500 - startingat: | 50000 _

 Files and directories

Save received files to: [~/Downloads Browse

Save screenshots to: |~/Downloads Browse

7L settings
| Certificate Authority: | /usr/share/blink/tls/ca.crt || Browse

_images/call.png
®© @ ® @ © © ® o ® = -

e wsg (000 s]

® 6505550111@defaultsve.clusterlocal

Buddy list User: |sofi 2] @~ @& % [Q search contacts or Enter Address

! @ sofi call: & Dial 6505550111
| hola

Displ.
pad Switch to Calls
Incoming Session Request Vet
ed \ Test Call
6505550270@default.svc.cluster.local ,"\ﬁ
t 6505550270@default.svc.cluster.local LS I “ Test Conference
| audiocalt | Jip: | v Allcontacts
cluster. \ Test Call
Reject Busy (L Accept. | o Conference
t . |
A Line status
@ Line 1: O Ringing
From:
To:
t
] Subject:
O Line2: idle
+ ¢ wew
From:
To:
t

Subject:

_images/twinkle01.png
192.168.121.145:

Private Identity: Associated Public Identities:
6505550111@default.sve.cluster.local sip:6505550111@defautt.sve.cluster.local comgure | (R
Password: ndqn37FD7 —
ony shown once New Pubic identty +
Private Identity: Associated Public Identities:
6505550270@default.sve.cluster.local sip:6505550270@defautt sve.cluster.local comgure | (R
Password: zba6HBYKG =
ony shown once New Pubic identty +
Twinkle - User profile: sofi

Privat

User profile:
st ==
Passw User
on sh £ SIP server
| 9) Voice mail Registrar:
6505¢ [mstant message Expiry: (3600 |- seconds =2
:?::: presence [Register at startup

2= ke audio [Add q-value to registration

€
Prival SIP protocol Outbound Proxy
65058 & Transport/NAT [Use outbound proxy -
:f:: (6 Address format Outbound proxy: [192.168.121.145

@ Timers [send in-dialog requests to proxy

; [pon't send tt iF its destinati be resolved locally.

g | fkmgmes Don't send a request to proxy ifits destination can be resolved locally.
6505% ﬂ Scripts
Passw 3
| ﬂ Security
AddF

I] = -

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/blink02.png
192.168.121.145:

Private Identity:
6505550111@default sve.cluster.local
Password: ndqn37FD7

any shown

Associated Public Identities:

sip:6505550111@default sve.cluster local Configure

Reset

New Public identity | ~

Private Ide:
65055502
Passwor
e @) Bonjour

© 6505550111@default.svecclu...
Private Ide
65055503
Password: |
only shown o

& O

Private Ide
65055505
Password: |
oy shown on

Private Ide
65055509
Password: |
oy shown on

Private Ide
65055509
Password: |
oy shown ond

- 2 o

Accounts| Audio Video Chat ScreenSharing Logging Advanced

Account Information | Media | Server Settings | Network | Advanced

SIP Proxy

& Always use my proxy for outgoing sessions

Outbound Proxy: [192.168.121.145 Port: 5060 .| Transport: [TCP :

Auth Username: |6505550111@default.svc.{

MSRP Relay

(] Always use my relay for outgoing sessions

MSRP Relay: Port: | 2855 | | Transport: [TLS 3

Extra Server Settings
Voicemail URI:
XCAP Root URL:
Server Tools URL:

Conference Server:

_images/blink03.png
192.168.121.145:

Clearwater

Private Idenity: Associated Public Identities:
6505550111@default.sve.cluster.local 5ip:6505550111@default.sve.cluster.local Configure
Password: ndqn37FD7 =
ony shown| New Public dentiy | ~

Blink Preferences

Private Idé ~
cosss02, M v @ S W b ©

Password: | Accounts| Audio Video Chat ScreenSharing Logging Advanced

shown onf .
o= ® Bonjour Account Information | Media | Server Settings | Network | Advanced
© 6505550111@default.sve.cl

Network Settings.
Private Ide

65055503 & [Use ICE to improve NAT traversal for medi

Password: | MSRP Transport: | TCP 2
onty shown on

Private Ide
65055508
Password: |
ony shown onf

Private Ide
65055509
Password: |
ony shown onf

Private Ide¢
65055509
Password: |
ony shown onf

_static/up-pressed.png

_static/minus.png

_images/blink01.png
192.168.121.145:

Private Identity: Associated Public Identities:
6505550111@default.sve.cluster.local sip:6505550111@defautt sve.cluster.local comgure | (R
Password: ndqn37FD7 =

ony shown| New Public identty +

Private Idé ~
cosss02, M v @ S W b &

Password: | Accounts| Audio Video Chat ScreenSharing Logging Advanced

shown onf . N
o= ® Bonjour Account Information | Media | Server Settings | Network | Advanced
© 6505550111@default.svecclu...

N & use account
Private Ide

65055503 Display Name: [6505550111
Password: |
onty shown on

Private Ide
65055508
Password: |
ony shown onf

Private Ide
65055509
Password: |
ony shown onf

Private Ide
65055509

Password: | Registration Succeeded
only shown ont

_static/plus.png

_static/up.png

